US009063855B2

a2z United States Patent (10) Patent No.: US 9,063,855 B2
McNairy et al. (45) Date of Patent: Jun. 23, 2015
(54) FAULT HANDLING AT A TRANSACTION 11/1008 (2013.01); GO6F 11/1024 (2013.01);

LEVEL BY EMPLOYING A TOKEN AND A
SOURCE-TO-DESTINATION PARADIGM IN A
PROCESSOR-BASED SYSTEM

GO6F 11/0724 (2013.01)

(58) Field of Classification Search
CPC GO6F 11/00; GO6F 11/10; GO6F 11/1008;
GO6F 11/1024

(71) Applicants: Cameron B. MeNairy, Windsor, CO See application file for complete search history.
(US); Anil Agrawal, Santa Clara, CA
(US); Jenna S. Mayfield, Fort Collins, .
CO (US); Eric A. Gouldey, Fort Collins, (56) References Cited
gg g gg, Mark Millican, Fort Collins, U.S. PATENT DOCUMENTS
5,953,351 A * 9/1999 Hicksetal.cceooenne 714/763
(72) Inventors: Cameron B. McNairy, Windsor, CO 6,519,736 Bl* 2/2003 Chenetal. 714/768
(US), Anil Agrawa], Santa Clara, CA 8,812,898 B1* 82014 Lahonetal. 714/4.2
(US): Jenna S. Mayfield, Fort Collins 2005/0015664 AL* 1/2005 Johnson et al. . . T14/15
CoO (,US) Eric A, Gould;y Fort Colliils 2008/0022154 Al* 12008 Endou 714/30
CO (US); Mark Millican, Fort Collins, * cited by examiner
CO (US)
(73) Assignee: Intel Corporation, Santa Clara, CA DPrimary Examiner — Char.les Ehne .
(US) (74) Attorney, Agent, or Firm — Lowenstein Sandler LLP
(*) Notice: Subject to any disclaimer, the term of this (57) ABSTRACT
patent is extended or adjusted under 35))) o
U.S.C. 154(b) by 204 days. A method for detecting errors in a processing device is dis-
closed. A data source unit of a processing device transmits
(21) Appl. No.: 13/826,843 data and a qualifier synchronously with the data, the qualifier
to indicate the data is uncorrectable. At least one intermediate
(22) Filed: Mar. 14,2013 functional unit in the processing device receives the data and
the qualifier. The at least one intermediate functional unit
(65) Prior Publication Data detects the data is uncorrectable based on the qualifier. The at
least one intermediate functional unit transmits, without
US 2014/0281747 Al Sep. 18, 2014 using, the data and the qualifier synchronously with the data
(51) Int.ClL to a data consumer unit of the processing device. The data
GO6F 1100 (2006.01) consumer unit receives the data and the qualifier. The data
GO6F 1107 (2006.01) consumer unit detects the data is uncorrectable based on the
GO6F 11/10 (2006.01) qualifier. The data consumer unit maintains, without using the
(52) US.Cl data and the qualifier.
CPC GO6F 11/0784 (2013.01); GOG6F 11/00

(2013.01); GOGF 11/10 (2013.01); GO6F 25 Claims, 8 Drawing Sheets

Data Source
rm—— 102

Data Qualifier
(114) (116)

Data Processor(s)

Data Qualifier

Tata STOTRge (5) —————————EM, 112

Data Qualifier

Data Processor(s)

I T 0
o

Data Qualifier
(114) {116)

100

Data Destination 106

Consumer
{may also be a data
rocessor or storel

US 9,063,855 B2

Sheet 1 of 8

Jun. 23, 2015

U.S. Patent

90t b

1015 10 10SS@20
elep e ag osje Aew) §

Jlawnsuo) ;
/ uoneunsaq eleq,

(9TT) WTT)
181J1[eND B1EQ

“““““ |

oTtT _¢m.mnm

e

i eleq ¥

SETIED Yo} eleq

71T ‘P01

LN BTN

Clile) 21e

Hile) Bieq

T 1

Jaiyllenp eleq

80T ‘70T §

COT $e

L Y §
(91T) (PIT
Jsileny eleq

924Nn0S eleq

00}

&~

I 3ANOI4

US 9,063,855 B2

Sheet 2 of 8

Jun. 23, 2015

U.S. Patent

ELr

5

A104

mxw@

i1
*

PR

_{{{l\ oo, e

HTNEHE 44 DRI

IS 45 %

GESET Y
A “w,m %

1 T

FEAE) O AN SR L

%

ERAE RS LAY

BiF LE0H

S

US 9,063,855 B2

Sheet 3 of 8

Jun. 23, 2015

U.S. Patent

vTE ‘TTE b

1483

FAlowaN walsAs

¥TE CTE

q8T€
auljadid

uol3onJIsu|

qoce
3|14 4215138y

QrTE
aydey
uoponasuU| T

q9T1€
ayse) eleq 11

qzTe
iayoed payiun 21

qo01¢E
yoed payiun €71

990€ g80¢€

00¢

€ 34N9Id

eQze
3|14 J915139Y

P 3

egre
ayoe) eeq 11

J3||043U0) EREIEMY]]
Aows iy WdIsAS

4

egTE
auladid

uol3INIISU|

ep1E
ayaer
uoidnaasul 17

BC1E

ay2e) payIun 71

eoTE

1ayoe) payiun €1

A
es0¢ e e90¢ : o
ERIBEIT] ocdpd 13]|0J3UDD 3
A A
Wia1sAS AlOWaA]

Sheet 4 of 8

Jun. 23, 2015

U.S. Patent

e e

A et |
= s !

57

ﬁ\H »\.ﬁ.

iMEkIHI3E

]
LT

AT #4134

T

S
B

ay ‘oid

U.S. Patent Jun. 23,2015 Sheet 5 of 8 US 9,063,855 B2

(START)

502 ’\ A DATA SOURCE UNIT OF A PROCESSING DEVICE TRANSMITS DATA AND A
QUALIFIER SYNCHRONOUSLY WITH THE DATA, THE QUALIFIER TO
INDICATE THE DATA 1S UNCORRECTABLE.

504
_\ AT LEAST ONE INTERMEDIATE FUNCTTONAL UNIT OF THE PROCESSING
DEVICE RECEIVES THE DATA AND THE QUALIFIER.

508 \ THE AT LEAST ONE INTERMEDIATE FUNCTIONAL UNIT DETECTS THE DATA
IS UNCORRECTABLE BASED ON THE QUALIFIER.

,

508 ’\- THE AT LEAST ONE INTERMEDIATE FUNCTIONAL UNIT TRANSMITS,
WITHOUT USING, THE DATA AND THE QUALIFIER SYNCHRONOUSLY WITH
THE DATA TO A DATA CONSUMER UNIT OF THE PROCESSING DEVICE.

'

510
’.\- THE DATA CONSUMER UNIT RECEIVES THE DATA AND THE QUALIFIER.

514 l

\ THE DATA CONSUMER UNIT DETECTS THE DATA IS UNCORRECTABLE
BASED ON THE QUALIFIER.

514
’_ THE DATA CONSUMER UNIT MAINTAINS, WITHOUT USING, THE DATA AND
THE QUALIFIER.

FIGURE 5

END

US 9,063,855 B2

Sheet 6 of 8

Jun. 23, 2015

U.S. Patent

<

uonnoex3g welbold swnsay

(8n)
MOl} [BWIOU 0} DWINSOY

¢l9 9poH

Buissaonld Jjoug 0}
paBuBYD MO} 10U0D

9 3¥NOI4 _ o8
2093ne]
Jdin Aouisiy
N
\ 909
th\\A. Ble(¢] 10
SN frrseriniro / .
. N\
_— ~ S

/809 seYeD
_ojeipawiau|
//(\

9N
\

0Lgsey Joisiboy \
. ouwbuguognooxg /\f

- 4
|||||||||||| J “,(XL

(€09)
puewwo?) 09
) peo- uolnoax3 welbolid

U.S. Patent Jun. 23,2015 Sheet 7 of 8 US 9,063,855 B2

paN LT

PROCESSING DEVICE
702 | STATIC MEMORY
ammm— 106
PROCESSING
LOGIC 726
< VIDEQ DISPLAY
710
BUS
MAIN MEMORY 704 ~—730
: ALPHA-NUMERIC
'NSTR;JZ%T'ONS <« > ! INPUTDEVICE
— 2
GRAPHICS
PROCESSING CURSOR
UNIT ‘ g CONTROL
722 - > DEVICE
714
VIDEO
PROCESSING SIGNAL
UNIT “ > GENERATION
P
728 DEVICE
716
AUDIO
PROCESSING le——» DATA STORAGE DEVICE
UNIT 718
732
MACHINE-READABLE
MEDIUM 724
NETWORK D E——
INTERFACE \ -
DEVICE “ ’ SOFTWARE
708 726
\y%
< 7
N4

FIGURE 7

US 9,063,855 B2

Sheet 8 of 8

Jun. 23, 2015

U.S. Patent

— 8 741914
58 [wwa | l-oew
Qv 3009 S303a 35NN
I9VHOLS YIYa Zg-"1 WoJ 775 | [a4Y09AIN
778 717 717
0/ 010Ny SINIT O/ 719049 SNg
688
B o AN 58
968 = 768 | SOHdYYD
rary QY ¥V, R 143d-HOIH
mw- ./: A/ Nm.l% /: Y
0 |dd| |dd[o / ~dd| |dd|
——— VTN N e
N%M 997 777 5% 77 77 A4 M
77 77
YOI M M AYONIW
H0SS004d H0SST004d -
08

US 9,063,855 B2

1
FAULT HANDLING AT A TRANSACTION
LEVEL BY EMPLOYING A TOKEN AND A
SOURCE-TO-DESTINATION PARADIGM IN A
PROCESSOR-BASED SYSTEM

TECHNICAL FIELD

The embodiments of the disclosure relate generally to
computer processor devices and, more specifically, to han-
dling uncorrectable hardware errors between functional ele-
ments of a processing device using a method of synchronous
data qualification.

BACKGROUND

Computer processors may employ error correction hard-
ware to correct errors of various corruption length and prop-
erties. Some error conditions exceed the ability of an error
correction scheme to correct. In another example, data may
become lost or otherwise unavailable for further processing.
It is the error processing capabilities and architecture of a
computer processor that determines when and how to handle
uncorrectable errors, unavailable data errors, and other hard-
ware-based errors within and between functional elements of
the computer processor. The error processing architecture is
an infrastructure distributed among each of the functional
blocks of the computer processor with varying error detection
and processing capabilities.

In one example, an error processing architecture may
employ an asynchronous message channel path for uncor-
rected error signaling. The corrupt data is used by the request-
ing execution unit(s) with the expectation that an error mes-
sageis delivered early enough to prevent any corruption of the
architectural state and subsequent functional elements due to
receiving corrupted data. However, since the error message is
delivered asynchronously, there is a time-window where
thread(s) may continue to execute instructions, which may
lead to potential data corruption. The time-window may be
small, but it is not zero.

BRIEF DESCRIPTION OF THE DRAWINGS

The disclosure will be understood more fully from the
detailed description given below and from the accompanying
drawings of various embodiments of the disclosure. The
drawings, however, should not be taken to limit the disclosure
to the specific embodiments, but are for explanation and
understanding only.

FIG. 1 is a block diagram that illustrates an example pro-
cessing device in which examples of the present disclosure
may operate,

FIG. 2 is a block diagram of a processor according to one
embodiment;

FIG. 3 is a block diagram that illustrates an example pro-
cessing device in which examples of the present disclosure
may operate,

FIG. 4A illustrates elements of a processor micro-architec-
ture according to one embodiment;

FIG. 4B illustrates elements of a processor micro-architec-
ture according to one embodiment;

FIG. 5 is a flow diagram illustrating an example of a
method for detecting errors in a processing device;

FIG. 6 is ablock diagram of a sequence of messages passed
between functional blocks of a processing device that
employs one embodiment of synchronous data poisoning for
handling uncorrectable errors;

15

30

35

40

45

50

55

2

FIG. 7 illustrates a diagrammatic representation of a
machine in the example form of a computer system within
which a set of instructions, for causing the machine to per-
form any one or more of the methodologies discussed herein,
may be executed; and

FIG. 8 is a block diagram of a computer system according
to one embodiment.

DETAILED DESCRIPTION

Conventionally, an error processing architecture may
employ an asynchronous message channel path for handling
uncorrectable errors. In an example, a load command may be
issued by one thread of a multi-core/multi-hardware threaded
processing device. A memory controller reads program code
for the load command from a memory. When the program
code for the load command is read by a memory controller,
the memory controller detects an un-correctable multi-bit
error fault.

The memory controller returns program control to an
execution engine with an uncorrected data. The memory con-
troller updates error logs and transmits an uncorrected data
error indication to a message handler. The message handler
broadcasts the uncorrected data error indication to all running
cores/threads along an asynchronous interrupt messaging
channel to halt execution of the other threads and to contain
the propagation of errors on other cores/threads. The issuing
thread generates a precise exception and control flow is redi-
rected to error processing code.

Unfortunately, there is a delay or time window between the
detection of the uncorrected data error and branching to fault
handling code. During the time window, other threads of the
same and other cores may continue to execute instructions
using data containing the uncorrected error, leading to a
downstream propagation of errors.

On the initiating thread, further execution is halted and
branches to exception handling code of an exception handler.
During execution of the exception handling code, the excep-
tion handler may capture an error log. Upon resuming from
the exception handler, execution branches to an OS-based
exception handler, which reads the log, clears the exception in
the log, and resets the processing device.

In another example, conventionally, a processing device
may employ an error processing architecture that uses data
qualification for handling uncorrectable errors. In the context
of processing devices, data qualification refers to a method
for tagging specific data as uncorrectable in a source func-
tional element which is further used to indicate to down-
stream functional elements not to act upon the uncorrectable
data. Whether and how the data is to be tagged as uncorrect-
able data is highly machine architecture specific.

In one example, a single bit ‘poison’ indicator may be
attached to data as it travels from memory/caches/I1O to a
core. When an intermediate device function block (e.g., a core
cache) receives, for example, instruction data with this poison
indication, the instruction is not permitted to continue execu-
tion through other functional blocks. Instead, a special code
sequence is executed in which a unique error signature is
logged in a logging register, and an error indication is sig-
naled to other downstream functional blocks/threads/proces-
SOr cores.

For example, a load command may be issued by one thread
of'amulti-core/multi-hardware threaded processing device. A
memory controller reads program code for the load command
from a memory. When the program code for the load com-
mand is read by the memory controller, the memory control-
ler detects an un-correctable multi-bit error fault.

US 9,063,855 B2

3

The memory controller may return program control to a
cache (i.e., an intermediate functional block) with uncor-
rected data and with a data poison bit set. The memory con-
troller also updates error logs indicating the detection of
uncorrected data and sends a low priority message to a mes-
sage handler. This time, the processing device notices the
instruction data with the poison indication, and the instruction
is not permitted to continue execution though other functional
blocks if the issuing thread. Instead, a special code sequence
is executed by the issuing thread which logs a unique error
signature in an error logging register. However, the poisoned
data is left in the intermediate functional blocks (not shown)
without further containment.

This method eliminates the potential of data corruption by
the thread that initiates the load instruction. However, the
signaling path of the uncorrected remains the same, wherein,
to contain the propagation of errors on other cores/threads,
the uncorrected data error is broadcast along an asynchronous
interrupt messaging channel to interrupt execution of the
other threads within the socket and to other sockets within the
cache-coherent domain.

Initially, program execution of the initiating thread is
halted and branches to error processing code of an exception
handler. During execution of the exception handling code, the
exception handler may capture an error log. Upon resuming
from the exception handler, execution branches to an OS-
based exception handler, which reads the error log and detects
that exception was triggered due to poison data. This permits
the OS-based exception handler to make an attempt to recover
the system for certain error types and return to normal execu-
tion by potentially loading a new program. In circumstances
where the OS-based exception handler is unable to recover
the system, it resets the processing device.

Unfortunately, there is still a non-zero delay or time win-
dow (not shown) between the detection of poison data and
asynchronously signaling to other cores/threads. The asyn-
chronous signaling path on which the error indication is trans-
mitted permits other thread(s) to operate on the poison data
and data corruption may still occur. As a result, a ‘double
fault’ may be indicated. For such unrecoverable exceptions,
the processing device immediately enters into shutdown
mode. Additionally, since there is only a single error indica-
tion bit (i.e., the poison), there is no identification of the
source of the poisoned data. Without an indication of the
source, system firmware needs to rely on bread-crumbs in the
error log registers of the many units that may have touched the
data. High performance systems are highly concurrent.
Therefore, there may be multiple data requests outstanding
and the error logs for the poisoned data may be overwritten by
other errors—both related and un-related. Also, without
details about source of the poison, it is impossible for receiv-
ing execution units to choose an optimal response to received
error data.

Embodiments of the disclosure address the above defi-
ciency of conventional solutions by a data source unit in a
processing device transmitting data and a qualifier synchro-
nously with the data, the qualifier to indicate the data is
uncorrectable. At least one intermediate functional unit in the
processing device receives the data and the qualifier. The at
least one intermediate functional unit detects the data is
uncorrectable based on the qualifier. The at least one inter-
mediate functional unit transmits, without using, the data and
the qualifier synchronously with the data to a data consumer
unit of the processing device. The data consumer unit receives
the data and the qualifier. The data consumer unit detects the

20

25

35

40

45

55

4

data is uncorrectable based on the qualifier. The data con-
sumer unit maintains, without using, the data and the quali-
fier.

In one embodiment, the qualifier is stored in a field asso-
ciated with the data. The qualifier may indicate the data
source as a source of error of the data. The qualifier may
indicate a type of error in the data. The type of error in the data
may be an uncorrectable or incomplete error. In one embodi-
ment, at least one of the data source unit, the data consumer
unit, and the at least one intermediate functional unit is one of
a data storage element or a data processing element. The data
storage element or the data processing element is one of a
processor core, an input-output element, a memory, a cache or
an inter-processor interconnect element.

By maintaining but not using the uncorrectable data and the
data qualifier, error correction mechanisms may initiate a
synchronous control flow change to error processing code. In
one embodiment of an error processing mechanism, the data
consumer unit may be a register file when the data comprises
operand data for an execution unit or when the data comprises
instructions. When the data is operand data, the register file
continuously replays the data and the qualifier until an asso-
ciated instruction stream is re-steered to error processing
code to prevent using the data and to ensure synchronous
error reporting. When the data comprises instructions, the
execution unit detects an error based on the qualifier, continu-
ously replays the data and the qualifier to prevent corrupt
instructions from executing, re-steers the instructions to error
processing code, and retires an associated instruction stream.
In either case, after executing the error processing code, the
processing device may resume program execution without
resetting the entire processing device. Reliability, availability,
and serviceability of the processing device are thus enhanced.

FIG. 1 is a block diagram that illustrates an example pro-
cessing device 100 in which examples of the present disclo-
sure may operate. The processing device 100 includes a data
source unit 102, at least one intermediate functional unit 104,
and a data consumer unit 106. The data source unit 102 may
be, for example, a data storage device, such as a data cache or
main system memory. The at least one intermediate func-
tional unit 104 may be one or more of data processing units
(e.g., 108, 110) and/or data storage units (e.g., 112). The data
consumer unit 106 may be a data processing or data storage
unit. The data source unit 102, the at least one intermediate
functional unit 104, and the data consumer unit 106 may be a
processor core, input-output, memory, cache, or inter-proces-
sor interconnects related blocks.

The processing device 100 employs synchronous error sig-
naling, where the data source unit 102 may detect that the data
114 it is storing or processing has an uncorrectable fault or
that the data is incomplete, and is therefore poisoned data.
The data source 102 may store a poison data qualifier 116 in
afield (e.g., an ECC, parity, or other field) associated with the
corrupted data such that the data and the poison indication
travel through downstream devices together synchronously.

The intermediate functional units 108, 110,112 that may
store and later forward the data 114 also may store the uncor-
rectable or data qualifier 116, i.e., maintain the data qualifier
116 synchronously with the data 114. The data qualifier 116
may expand beyond an initial data segment to a natural error
detection granularity of each functional unit storing the data
114 (e.g., a cache with error protection on a byte width basis
may indicate an uncorrectable error within that byte, but a
cache higher in the hierarchy with an error protection on a
cache line basis may mark the entire line poisoned instead of
just the original byte). The data qualifier 116 may alias to

US 9,063,855 B2

5

natural error conditions such as parity error or as multi-bit
data error conditions for ECC protected blocks.

The data consumer unit 106 may detect that the data 114 is
uncorrectable based on the data qualifier 116. The data quali-
fier 116 may indicate the data source unit 102 as a generator
of the uncorrectable data 114. The data qualifier 116 may
indicate a type of error in the data 114 which may be, for
example, an uncorrectable data error such as a multi-bit data
error or parity error. The data consumer 106 is not to consume
the uncorrectable data 114 but maintain the data 114 and the
data qualifier 116 based on detecting the data 114 is uncor-
rectable. Mechanisms in the error detection and recovery
hardware ensure that consuming instructions do not actually
use the uncorrectable data 114.

In an example, the final receiving block (e.g., the data
consumer unit 106) may be a register file for operand data or
an execution unit for instruction data. The data qualifier 116 is
stored with the delivered data 114 by the data consumer unit
106. In an example, storing the data qualifier 116 with the
uncorrectable data 114 may be accomplished by a synchro-
nous replay mechanism for both data and instructions. For
data, this mechanism may continuously replay until the
instruction stream is re-steered. For data, this mechanism
may immediately and synchronously redirect control flow to
error processing code as an exception. For instructions, this
mechanism maintains the data qualifier 116 until execution
units detect the error and employ the replay mechanism to
prevent the corrupt instructions from executing and retiring.
Inan example, the data source unit 102, as a result of detecting
the uncorrectable data 114, may signal a low severity error
indication to error detection and recording logic (not shown).
The at least one intermediate logic unit 104, as a result of
detecting the uncorrectable data, may signal or log a low
severity error indication in response to detecting the data 114
is poisoned. The data consumer unit 106, as a result of detect-
ing the poison data 114, may signal or log a high severity error
indication since it is the requester of the data and intended to
use the data as operand or instruction.

FIG. 2 is a block diagram of the micro-architecture for a
processor 200 that includes logic circuits to perform instruc-
tions in accordance with one embodiment of the present
invention. In some embodiments, an instruction in accor-
dance with one embodiment can be implemented to operate
on data elements having sizes of byte, word, doubleword,
quadword, etc., as well as datatypes, such as single and
double precision integer and floating point datatypes. In one
embodiment the in-order front end 201 is the part of the
processor 200 that fetches instructions to be executed and
prepares them to be used later in the processor pipeline. The
front end 201 may include several units. In one embodiment,
the instruction prefetcher 226 fetches instructions from
memory and feeds them to an instruction decoder 228 which
in turn decodes or interprets them. For example, in one
embodiment, the decoder decodes a received instruction into
one or more operations called “micro-instructions” or
“micro-operations” (also called micro op or uops) that the
machine can execute. In other embodiments, the decoder
parses the instruction into an opcode and corresponding data
and control fields that are used by the micro-architecture to
perform operations in accordance with one embodiment. In
one embodiment, the trace cache 230 takes decoded uops and
assembles them into program ordered sequences or traces in
the uop queue 234 for execution. When the trace cache 230
encounters a complex instruction, the microcode ROM 232
provides the uops needed to complete the operation.

Some instructions are converted into a single micro-op,
whereas others need several micro-ops to complete the full

10

15

20

25

30

35

40

45

50

55

60

65

6

operation. In one embodiment, if more than four micro-ops
are needed to complete an instruction, the decoder 228
accesses the microcode ROM 232 to do the instruction. For
one embodiment, an instruction can be decoded into a small
number of micro ops for processing at the instruction decoder
228. In another embodiment, an instruction can be stored
within the microcode ROM 232 should a number of micro-
ops be needed to accomplish the operation. The trace cache
230 refers to an entry point programmable logic array (PLA)
to determine a correct micro-instruction pointer for reading
the micro-code sequences to complete one or more instruc-
tions in accordance with one embodiment from the micro-
code ROM 232. After the microcode ROM 232 finishes
sequencing micro-ops for an instruction, the front end 201 of
the machine resumes fetching micro-ops from the trace cache
230.

The out-of-order execution engine 203 is where the
instructions are prepared for execution. The out-of-order
execution logic has a number of buffers to smooth out and
re-order the flow of instructions to optimize performance as
they go down the pipeline and get scheduled for execution.
The allocator logic allocates the machine buffers and
resources that each uop needs in order to execute. The register
renaming logic renames logic registers onto entries in a reg-
ister file. The allocator also allocates an entry for each uop in
one of the two uop queues, one for memory operations and
one for non-memory operations, in front of the instruction
schedulers: memory scheduler, fast scheduler 202, slow/gen-
eral floating point scheduler 204, and simple floating point
scheduler 206. The uop schedulers 202, 204, 206 determine
when a uop is ready to execute based on the readiness of their
dependent input register operand sources and the availability
of the execution resources the uops need to complete their
operation. The fast scheduler 202 of one embodiment can
schedule on each half of the main clock cycle while the other
schedulers can schedule once per main processor clock cycle.
The schedulers arbitrate for the dispatch ports to schedule
uops for execution.

Register files 208, 210 sit between the schedulers 202, 204,
206, and the execution units 212,214, 216, 218, 220, 222, 224
in the execution block 211. There is a separate register file
208, 210 for integer and floating point operations, respec-
tively. Each register file 208, 210, of one embodiment also
includes a bypass network that can bypass or forward just
completed results that have not yet been written into the
register file to new dependent uops. The integer register file
208 and the floating point register file 210 are also capable of
communicating data with the other. For one embodiment, the
integer register file 208 is split into two separate register files,
one register file for the low order 32 bits of data and a second
register file for the high order 32 bits of data. The floating
point register file 210 of one embodiment has 128 bit wide
entries because floating point instructions typically have
operands from 64 to 128 bits in width.

The execution block 211 contains the execution units 212,
214, 216, 218, 220, 222, 224, where the instructions are
actually executed. This section includes the register files 208,
210, that store the integer and floating point data operand
values that the micro-instructions need to execute. The pro-
cessor 200 of one embodiment is comprised of a number of
execution units: address generation unit (AGU) 212, AGU
214, fast ALU 216, fast ALU 218, slow ALU 220, floating
point ALU 222, floating point move unit 224. For one
embodiment, the floating point execution blocks 222, 224,
execute floating point, MMX, SIMD, and SSE, or other
operations. The floating point ALLU 222 of one embodiment
includes a 64 bit by 64 bit floating point divider to execute

US 9,063,855 B2

7

divide, square root, and remainder micro-ops. For embodi-
ments of the present invention, instructions involving a float-
ing point value may be handled with the floating point hard-
ware. In one embodiment, the ALU operations go to the
high-speed ALU execution units 216, 218. The fast ALUs
216, 218, of one embodiment can execute fast operations with
an effective latency of half a clock cycle. For one embodi-
ment, most complex integer operations go to the slow ALU
220 as the slow ALU 220 includes integer execution hardware
for long latency type of operations, such as a multiplier, shifts,
flag logic, and branch processing. Memory load/store opera-
tions are executed by the AGUs 212, 214. For one embodi-
ment, the integer ALUs 216, 218, 220 are described in the
context of performing integer operations on 64 bit data oper-
ands. In alternative embodiments, the ALUs 216, 218, 220
can be implemented to support a variety of data bits including
16, 32, 128, 256, etc. Similarly, the floating point units 222,
224 can be implemented to support a range of operands hav-
ing bits of various widths. For one embodiment, the floating
point units 222, 224 can operate on 128 bits wide packed data
operands in conjunction with SIMD and multimedia instruc-
tions.

In one embodiment, the uvops schedulers 202, 204, 206
dispatch dependent operations before the parent load has
finished executing. As uops are speculatively scheduled and
executed in processor 200, the processor 200 also includes
logic to handle memory misses. If a data load misses in the
data cache, there can be dependent operations in flight in the
pipeline that have left the scheduler with temporarily incor-
rect data. A replay mechanism tracks and re-executes instruc-
tions that use incorrect data. The dependent operations should
be replayed and the independent ones are allowed to com-
plete. The schedulers and replay mechanism of one embodi-
ment of a processor are also designed to catch instruction
sequences for text string comparison operations.

The term “registers” may refer to the on-board processor
storage locations that are used as part of instructions to iden-
tify operands. In other words, registers may be those that are
usable from the outside of the processor (from a program-
mer’s perspective). However, the registers of an embodiment
should not be limited in meaning to a particular type of
circuit. Rather, a register of an embodiment is capable of
storing and providing data, and performing the functions
described herein. The registers described herein can be imple-
mented by circuitry within a processor using any number of
different techniques, such as dedicated physical registers,
dynamically allocated physical registers using register
renaming, combinations of dedicated and dynamically allo-
cated physical registers, etc. In one embodiment, integer reg-
isters store thirty-two bit integer data. A register file of one
embodiment also contains eight multimedia SIMD registers
for packed data. For the discussions below, the registers are
understood to be data registers designed to hold packed data,
such as 64 bits wide MMX registers (also referred to as ‘mm’
registers in some instances) in microprocessors enabled with
the MMX™ technology from Intel Corporation of Santa
Clara, Calif. These MMX registers, available in both integer
and floating point forms, can operate with packed data ele-
ments that accompany SIMD and SSE instructions. Similarly,
128 bits wide XMM registers relating to SSE2, SSE3, SSE4,
or beyond (referred to generically as “SSEx”) technology can
also be used to hold such packed data operands. In one
embodiment, in storing packed data and integer data, the
registers do not need to differentiate between the two data
types. In one embodiment, integer and floating point are
either contained in the same register file or different register

40

45

55

8

files. Furthermore, in one embodiment, floating point and
integer data may be stored in different registers or the same
registers.

FIG. 3 is a block diagram that illustrates an example pro-
cessing device 200 in which examples of the present disclo-
sure may operate. The processing device 300 includes a plu-
rality of processors (e.g., processor A (302a) and processor B
(3025)), each of which may interface with external system
memory 304. Each of the plurality of processors 302a, 3025
may comprise a corresponding plurality of functional blocks,
which may comprise, for example, amemory controller 306a,
3065 coupled to the external system memory 304. The
memory controllers 306a, 3065 are further coupled to corre-
sponding system interface units 3084, 3085, which permit
communication between the processors 302a, 3025. The sys-
tem interface units 308a, 308% are further coupled to corre-
sponding level 3 (L3) unified caches 310a, 31056. The level 3
unified caches 3104, 3104 are coupled to corresponding level
2 (L2) unified caches 312a, 3125. The level 2 unified caches
312a,312b are coupled to corresponding separate level 1 (L1)
instruction caches 3144, 3145 and corresponding level 1 (L1)
data caches 316a, 3165. The level 1 instruction caches 314a,
314b are coupled to corresponding instruction pipelines
318a,318b. Thelevel 1 data caches 316a,316b are coupled to
corresponding register files 320a, 3204.

In an example, an uncorrectable error may develop while
data 322 is stored in the [.1 data cache 31654 (i.e., the data
source unit 102). The data 322 may be evicted (by explicit or
implicit write-back) and a data qualifier 324 may indicate the
data 322 is uncorrectable. Error detection and recording logic
records a low severity error for this event. The data 322 and
the data qualifier 324 may be transmitted by the L1 data cache
316a to and through a plurality of intermediate functional
units 104 from processor B (302B) to processor A (302A) by
means of the corresponding system interface units 3085,
308a. Each of the intermediate functional units 104 maintain
and pass the uncorrectable data 322 and the data qualifier 324
from one structure to another. Error detection and recording
logic records a low severity error. The destination of the data
322 and its data qualifier 324 is the register file 320a, which
receives the data qualifier 116 but does not consume the
uncorrectable data 322, and where error detection and record-
ing logic record a higher severity error.

FIG. 4A is ablock diagram illustrating an in-order pipeline
and a register renaming stage, out-of-order issue/execution
pipeline according to at least one embodiment of the inven-
tion. FIG. 4B is a block diagram illustrating an in-order archi-
tecture core and a register renaming logic, out-of-order issue/
execution logic to be included in a processor according to at
least one embodiment of the invention. The solid lined boxes
in FIG. 4A illustrate the in-order pipeline, while the dashed
lined boxes illustrates the register renaming, out-of-order
issue/execution pipeline. Similarly, the solid lined boxes in
FIG. 4B illustrate the in-order architecture logic, while the
dashed lined boxes illustrates the register renaming logic and
out-of-order issue/execution logic.

In FIG. 4A, a processor pipeline 400 includes a fetch stage
402, a length decode stage 404, a decode stage 406, an allo-
cation stage 408, a renaming stage 410, a scheduling (also
known as a dispatch or issue) stage 412, a register read/
memory read stage 414, an execute stage 416, a write back/
memory write stage 418, an exception handling stage 422,
and a commit stage 424.

In FIG. 4B, arrows denote a coupling between two or more
units and the direction of the arrow indicates a direction of
data flow between those units. FIG. 4B shows processor core

US 9,063,855 B2

9

490 including a front end unit 430 coupled to an execution
engine unit 450, and both are coupled to a memory unit 470.

The core 490 may be a reduced instruction set computing
(RISC) core, a complex instruction set computing (CISC)
core, avery long instruction word (VLIW) core, or a hybrid or
alternative core type. As yet another option, the core 490 may
be a special-purpose core, such as, for example, a network or
communication core, compression engine, graphics core, or
the like.

The front end unit 430 includes a branch prediction unit
432 coupled to an instruction cache unit 434, which is
coupled to an instruction translation lookaside buffer (TLB)
436, which is coupled to an instruction fetch unit 438, which
is coupled to a decode unit 440. The decode unit or decoder
may decode instructions, and generate as an output one or
more micro-operations, micro-code entry points, microin-
structions, other instructions, or other control signals, which
are decoded from, or which otherwise reflect, or are derived
from, the original instructions. The decoder may be imple-
mented using various different mechanisms. Examples of
suitable mechanisms include, but are not limited to, look-up
tables, hardware implementations, programmable logic
arrays (PLAs), microcode read only memories (ROMs), etc.
The instruction cache unit 434 is further coupled to a level 2
(L2) cache unit 476 in the memory unit 470. The decode unit
440 is coupled to a rename/allocator unit 452 in the execution
engine unit 450.

The execution engine unit 450 includes the rename/alloca-
tor unit 452 coupled to a retirement unit 454 and a set of one
or more scheduler unit(s) 456. The scheduler unit(s) 456
represents any number of different schedulers, including res-
ervations stations, central instruction window, etc. The sched-
uler unit(s) 456 is coupled to the physical register file(s)
unit(s) 458. Each of the physical register file(s) units 458
represents one or more physical register files, different ones
of'which store one or more different data types, such as scalar
integer, scalar floating point, packed integer, packed floating
point, vector integer, vector floating point, etc., status (e.g., an
instruction pointer that is the address of the next instruction to
be executed), etc. The physical register file(s) unit(s) 458 is
overlapped by the retirement unit 454 to illustrate various
ways in which register renaming and out-of-order execution
may be implemented (e.g., using a reorder buffer(s) and a
retirement register file(s), using a future file(s), a history
buffer(s), and a retirement register file(s); using a register
maps and a pool of registers; etc.). Generally, the architectural
registers are visible from the outside of the processor or from
a programmer’s perspective. The registers are not limited to
any known particular type of circuit. Various different types
of registers are suitable as long as they are capable of storing
and providing data as described herein. Examples of suitable
registers include, but are not limited to, dedicated physical
registers, dynamically allocated physical registers using reg-
ister renaming, combinations of dedicated and dynamically
allocated physical registers, etc. The retirement unit 454 and
the physical register file(s) unit(s) 458 are coupled to the
execution cluster(s) 460. The execution cluster(s) 460
includes a set of one or more execution units 162 and a set of
one or more memory access units 464. The execution units
462 may perform various operations (e.g., shifts, addition,
subtraction, multiplication) and on various types of data (e.g.,
scalar floating point, packed integer, packed floating point,
vector integer, vector floating point). While some embodi-
ments may include a number of execution units dedicated to
specific functions or sets of functions, other embodiments
may include one execution unit or multiple execution units
that all perform all functions. The scheduler unit(s) 456,

10

15

20

25

30

35

40

45

50

55

60

65

10

physical register file(s) unit(s) 458, and execution cluster(s)
460 are shown as being possibly plural because certain
embodiments create separate pipelines for certain types of
data/operations (e.g., a scalar integer pipeline, a scalar float-
ing point/packed integer/packed floating point/vector integer/
vector floating point pipeline, and/or a memory access pipe-
line that each have their own scheduler unit, physical register
file(s) unit, and/or execution cluster—and in the case of a
separate memory access pipeline, certain embodiments are
implemented in which the execution cluster of this pipeline
has the memory access unit(s) 464). It should also be under-
stood that where separate pipelines are used, one or more of
these pipelines may be out-of-order issue/execution and the
rest in-order.

The set of memory access units 464 is coupled to the
memory unit 470, which includes a data TLB unit 472
coupled to a data cache unit 474 coupled to a level 2 (L2)
cache unit 476. In one exemplary embodiment, the memory
access units 464 may include a load unit, a store address unit,
and a store data unit, each of which is coupled to the data TL.B
unit 472 in the memory unit 470. The [.2 cache unit 476 is
coupled to one or more other levels of cache and eventually to
a main memory.

By way of example, the exemplary register renaming, out-
of-order issue/execution core architecture may implement the
pipeline 400 as follows: 1) the instruction fetch 438 performs
the fetch and length decoding stages 402 and 404; 2) the
decode unit 440 performs the decode stage 406; 3) the
rename/allocator unit 452 performs the allocation stage 408
and renaming stage 410; 4) the scheduler unit(s) 456 per-
forms the schedule stage 412; 5) the physical register file(s)
unit(s) 458 and the memory unit 470 perform the register
read/memory read stage 414; the execution cluster 460 per-
form the execute stage 416; 6) the memory unit 470 and the
physical register file(s) unit(s) 458 perform the write back/
memory write stage 418; 7) various units may be involved in
the exception handling stage 422; and 8) the retirement unit
454 and the physical register file(s) unit(s) 458 perform the
commit stage 424.

The core 490 may support one or more instructions sets
(e.g., the x86 instruction set (with some extensions that have
been added with newer versions); the MIPS instruction set of
MIPS Technologies of Sunnyvale, Calif.; the ARM instruc-
tion set (with additional extensions such as NEON) of ARM
Holdings of Sunnyvale, Calif.).

It should be understood that the core may support multi-
threading (executing two or more parallel sets of operations
orthreads), and may do so in a variety of ways including time
sliced multithreading, simultaneous multithreading (where a
single physical core provides a logical core for each of the
threads that physical core is simultaneously multithreading),
or a combination thereof (e.g., time sliced fetching and
decoding and simultaneous multithreading thereafter such as
in the Intel® Hyperthreading technology).

While register renaming is described in the context of
out-of-order execution, it should be understood that register
renaming may be used in an in-order architecture. While the
illustrated embodiment of the processor also includes a sepa-
rate instruction and data cache units 434/474 and a shared L2
cache unit 476, alternative embodiments may have a single
internal cache for both instructions and data, such as, for
example, a Level 1 (L1) internal cache, or multiple levels of
internal cache. In some embodiments, the system may
include a combination of an internal cache and an external
cache that is external to the core and/or the processor. Alter-
natively, all of the cache may be external to the core and/or the
processor.

US 9,063,855 B2

11

FIG. 5 is a flow diagram illustrating an example of a
method 500 for detecting errors in a processing device. At
block 502, a data source unit 102 of the processing device 100
transmits data 114 and a qualifier 116 synchronously with the
data 114, the qualifier 116 to indicate the data 114 is uncor-
rectable. The qualifier 116 may be stored in a field associated
with the data 114. The qualifier 116 may indicate the data
source unit 102 as a source of uncorrectable corruption of the
data 114. The qualifier 116 may indicate a type of error in the
data 114. The type of error in the data 114 may be, for
example, an uncorrectable or incomplete error. The type of
uncorrectable error may be, for example, a multi-bit error or
a parity error. The data source unit 102, upon detecting the
data 114 is uncorrectable may signal a low severity error
indication.

At block 504, at least one intermediate functional unit 104
of the processing device 100 receives the data 114 and the
qualifier 116. At block 506, the at least one intermediate
functional unit 104 detects the data 114 is uncorrectable
based on the qualifier 116. The at least one intermediate
functional unit 104, upon detecting the data 114 is uncorrect-
able, may signal and/or log a low severity error indication. At
block 508, the at least one intermediate functional unit 104
transmits, without using, the data 114 and the qualifier 116
synchronously with the data to a data consumer unit 106 of
the processing device 100.

At block 510, the data consumer unit 106 receives the data
114 and the qualifier 116. At block 512, the data consumer
unit 106 detects the data 114 is uncorrectable based on the
qualifier 116. At block 514, the data consumer unit 106 main-
tains, without using, the data 114 and the qualifier 116. The
data consumer unit 106, upon detecting the data 114 is uncor-
rectable, may signal and/or log a high severity error indica-
tion.

FIG. 6 is ablock diagram of a sequence of messages passed
between functional blocks of a processing device 600 that
employs one embodiment of synchronous data poisoning for
handling uncorrectable errors. Program code indicates that a
load command 602 is to be executed which is running on
threadO/core((604) of the processing device 600. At block
U1, a data source unit 606, which, in an example, is a memory
controller 606, retrieves data corresponding to the load com-
mand from a memory (not shown). At block U2, the memory
controller 606 detects an uncorrected error 607. At block U3,
the memory controller 606 transmits the data synchronously
with a qualifier indicating that data is uncorrectable to inter-
mediate caches 608. At block U4, the memory controller 606
updates error logs and may, at block U5, signal a low severity
error event. At block U6, the intermediate caches 608 recog-
nize the data is poisoned by detecting the data qualifier, and
transmits the data and the data qualifier synchronously to a
data consumer unit 610, which, in the example, is an execu-
tion engine 610 of thread0/core0 (604) while traveling
through intermediate caches 608. The execution engine 610
logs the error in a corresponding register file but does not
consume the corrupted data upon detecting the poison data
qualifier. At block U7, program control branches to error
processing code 612. At block U8, program control resumes
on thread0/core0 (604) to normal execution.

FIG. 7 illustrates a diagrammatic representation of a
machine in the example form of a computing system 700
within which a set of instructions, for causing the machine to
perform any one or more of the methodologies discussed
herein, may be executed. In alternative embodiments, the
machine may be connected (e.g., networked) to other
machines in a LAN, an intranet, an extranet, or the Internet.
The machine may operate in the capacity of aserver oraclient

10

15

20

25

30

35

40

45

50

55

60

65

12

device in a client-server network environment, or as a peer
machine in a peer-to-peer (or distributed) network environ-
ment. The machine may be a personal computer (PC), a tablet
PC, a set-top box (STB), a Personal Digital Assistant (PDA),
a cellular telephone, a web appliance, a server, a network
router, switch or bridge, or any machine capable of executing
a set of instructions (sequential or otherwise) that specify
actions to be taken by that machine. Further, while only a
single machine is illustrated, the term “machine” shall also be
taken to include any collection of machines that individually
or jointly execute a set (or multiple sets) of instructions to
perform any one or more of the methodologies discussed
herein.

The computing system 700 includes a processing device
702, a main memory 804 (e.g., read-only memory (ROM),
flash memory, dynamic random access memory (DRAM)
(such as synchronous DRAM (SDRAM) or DRAM
(RDRAM), etc.), a static memory 706 (e.g., flash memory,
static random access memory (SRAM), etc.), and a data stor-
age device 718, which communicate with each other via a bus
730.

Processing device 702 represents one or more general-
purpose processing devices such as a microprocessor, central
processing unit, or the like. More particularly, the processing
device may be complex instruction set computing (CISC)
microprocessor, reduced instruction set computer (RISC)
microprocessor, very long instruction word (VLIW) micro-
processor, or processor implementing other instruction sets,
or processors implementing a combination of instruction sets.
Processing device 702 may also be one or more special-
purpose processing devices such as an application specific
integrated circuit (ASIC), a field programmable gate array
(FPGA), a digital signal processor (DSP), network processor,
or the like. In one embodiment, processing device 702 may
include one or processing cores. The processing device 702 is
configured to execute the processing logic 726 for performing
the operations discussed herein. In one embodiment, process-
ing device 702 is the same as processing device 100 described
with respect to FIG. 1 that implements the data source unit
102, at least one intermediate function units 104, and the data
consumer unit 106. Alternatively, the computing system 700
can include other components as described herein.

The computing system 700 may further include a network
interface device 708 communicably coupled to a network
720. The computing system 700 also may include a video
display unit 710 (e.g., a liquid crystal display (LCD) or a
cathode ray tube (CRT)), an alphanumeric input device 712
(e.g., akeyboard), a cursor control device 714 (e.g., a mouse),
a signal generation device 716 (e.g., a speaker), or other
peripheral devices. Furthermore, computing system 700 may
include a graphics processing unit 722, a video processing
unit 728 and an audio processing unit 732. In another embodi-
ment, the computing system 700 may include a chipset (not
illustrated), which refers to a group of integrated circuits, or
chips, that are designed to work with the processing device
702 and controls communications between the processing
device 702 and external devices. For example, the chipset
may be a set of chips on a motherboard that links the process-
ing device 702 to very high-speed devices, such as main
memory 704 and graphic controllers, as well as linking the
processing device 702 to lower-speed peripheral buses of
peripherals, such as USB, PCI or ISA buses.

The data storage device 718 may include a computer-read-
able storage medium 724 on which is stored software 726
embodying any one or more of the methodologies of func-
tions described herein. The software 726 may also reside,
completely or at least partially, within the main memory 704

US 9,063,855 B2

13

asinstructions 726 and/or within the processing device 702 as
processing logic 726 during execution thereof by the comput-
ing system 700; the main memory 704 and the processing
device 702 also constituting computer-readable storage
media.

The computer-readable storage medium 724 may also be
used to store instructions 726 utilizing the data source unit
102, at least one intermediate function units 104, and the data
consumer unit 106, such as described with respect to FIG. 1,
and/or a software library containing methods that call the
above applications. While the computer-readable storage
medium 724 is shown in an example embodiment to be a
single medium, the term “computer-readable storage
medium” should be taken to include a single medium or
multiple media (e.g., a centralized or distributed database,
and/or associated caches and servers) that store the one or
more sets of instructions. The term “computer-readable stor-
age medium” shall also be taken to include any medium that
is capable of storing, encoding or carrying a set of instruction
for execution by the machine and that cause the machine to
perform any one or more of the methodologies of the present
embodiments. The term “computer-readable storage
medium” shall accordingly be taken to include, but not be
limited to, solid-state memories, and optical and magnetic
media.

Referring now to FIG. 8, shown is a block diagram of a
second system 800 in accordance with an embodiment of the
present invention. As shown in FIG. 8, multiprocessor system
800 is a point-to-point interconnect system, and includes a
first processor 870 and a second processor 880 coupled via a
point-to-point interconnect 850. Each of processors 870 and
880 may be some version of the processors of the computing
systems as described herein.

While shown with two processors 870, 880, it is to be
understood that the scope of the present disclosure is not so
limited. In other embodiments, one or more additional pro-
cessors may be present in a given processor.

Processors 870 and 880 are shown including integrated
memory controller units 872 and 882, respectively. Processor
870 also includes as part of its bus controller units point-to-
point (P-P) interfaces 876 and 878; similarly, second proces-
sor 880 includes P-P interfaces 886 and 888. Processors 870,
880 may exchange information via a point-to-point (P-P)
interface 850 using P-P interface circuits 878, 888. As shown
in FIG. 8, IMCs 872 and 882 couple the processors to respec-
tive memories, namely a memory 832 and a memory 834,
which may be portions of main memory locally attached to
the respective processors.

Processors 870, 880 may each exchange information with
a chipset 890 via individual P-P interfaces 852, 854 using
point to point interface circuits 876, 894, 886, 898. Chipset
890 may also exchange information with a high-performance
graphics circuit 838 via a high-performance graphics inter-
face 839.

A shared cache (not shown) may be included in either
processor or outside of both processors, yet connected with
the processors via P-P interconnect, such that either or both
processors’ local cache information may be stored in the
shared cache if a processor is placed into a low power mode.

Chipset 890 may be coupled to a first bus 816 via an
interface 896. In one embodiment, first bus 816 may be a
Peripheral Component Interconnect (PCI) bus, or a bus such
as a PCI Express bus or another third generation 1/O inter-
connect bus, although the scope of the present disclosure is
not so limited.

As shown in FIG. 8, various 1/O devices 814 may be
coupled to first bus 816, along with a bus bridge 818 which

10

15

20

25

30

35

40

45

50

55

60

65

14

couples first bus 816 to a second bus 820. In one embodiment,
second bus 820 may be a low pin count (LPC) bus. Various
devices may be coupled to second bus 820 including, for
example, a keyboard and/or mouse 822, communication
devices 827 and a storage unit 828 such as a disk drive or other
mass storage device which may include instructions/code and
data 830, in one embodiment. Further, an audio /O 824 may
be coupled to second bus 820. Note that other architectures
are possible. For example, instead of the point-to-point archi-
tecture of FIG. 8, a system may implement a multi-drop bus or
other such architecture.

The following examples pertain to further embodiments.

Example 1 is an method comprising: 1) transmitting, by a
data source unit in the processing device, data and a qualifier
synchronously with the data, the qualifier to indicate the data
is uncorrectable; 2) receiving the data and the qualifier by a
data consumer unit in the processing device; 3) detecting, by
the data consumer unit, the data is uncorrectable based on the
qualifier; and 4) maintaining, without using, by the data con-
sumer unit, the data and the qualifier.

In Example 2, the subject matter of Example 1, he qualifier
can optionally be stored in a field associated with the data.

InExample 3, the subject matter of any of Examples 2-3 the
qualifier can optionally indicate the data source unit as a
source of error for the data.

In Example 4, in the subject matter of any of Examples 1-3,
the qualifier can optionally indicate a type of error in the data.

In Example 5, in the subject matter of any of Examples 1-4,
the type of error in the data can optionally be uncorrectable or
incomplete.

In Example 6, in the subject matter of any of Examples 1-5,
the type of uncorrectable error can be a multi-bit error or
parity error.

In Example 7, in the subject matter of any of Examples 1-6,
the preventing use of the data and the qualifier can optionally
comprise aborting delivery of the data.

In Example 8, in the subject matter of any of Examples 1-7,
the data consumer unit can be a register file or functional unit
when the data comprises operand data or an execution unit
when the data comprises instructions.

In Example 9, in the subject matter of any of Examples 1-8,
the use of the data can optionally be prevented until the
instruction stream is re-steered to error processing code an
when the data comprises instructions, the execution unit can
optionally: 1) detect an error based on the qualifier, 2) prevent
the uncorrectable instruction data from executing, 3 re-steer
the instructions to error processing code, and 4) retire an
associated instruction stream.

In Example 10, the subject matter of any of Examples 1-9
can optionally process, by the processing device, the
re-steered instruction stream with the error processing code.

In Example 11, subject matter of any of Examples 1-10 can
optionally, after processing the error processing code, resume
program execution by the processing device.

In Example 12, the subject matter of any of Examples 1-11
can optionally detect, by the data source unit, the data is
uncorrectable and signal, by the data source unit, a low sever-
ity error indication.

In Example 13, the subject matter of any of Examples 1-12
can optionally: 1) receive the data and the qualifier by at least
one intermediate functional unit in the processing device; 2)
detect, by the at least one intermediate functional unit, the
data is uncorrectable based on the qualifier; and 3) transmit,
without using, by the at least one intermediate functional unit,
the data and the qualifier synchronously with the data to the
data consumer unit.

US 9,063,855 B2

15

In Example 14, the subject matter of any of Examples 1-13
can optionally at least one of signal or log, by the at least one
intermediate functional unit, a low severity error indication in
response to detecting the data is uncorrectable.

In Example 15, the subject matter of any of Examples 1-14
can optionally at least one of signal or log, by the data con-
sumer unit, a high severity error indication in response to
detecting the data is uncorrectable.

In Example 16, the subject matter of any of Examples
11-15 can optionally at least one of signal or log, by the data
consumer unit, a low severity error indication in response to
detecting the data is uncorrectable, but is not yet required for
use as an operand for operand data or for execution for
instruction data.

In Example 17, in the subject matter of any of Examples
11-15 the qualifier can optionally be interpreted as expanding
beyond an initial data segment to an error detection granular-
ity of'a functional unit storing the data.

Example 18 is a processing device, comprising: a data
source unit to transmit data and a qualifier synchronously
with the data, the qualifier to indicate the data is uncorrectable
and a data consumer unit to: 1) receive the data and the
qualifier, detect the data is uncorrectable based on the quali-
fier, and maintain, without using, the data and the qualifier.

In Example 19, the processing device further comprises at
least one intermediate functional unit to: 1) receive the data
and the qualifier; 2) detect the data is uncorrectable based on
the qualifier; and 3) transmit, without using, the data and the
qualifier synchronously with the data to the data consumer
unit.

In Example 20, in the subject matter of any one of
Examples 18-19, the qualifier can optionally be stored in a
field associated with the data.

In Example 21, in the subject matter of any one of
Examples 18-20, the qualifier can optionally indicate the data
source unit as a source of generating uncorrectable data.

In Example 22, in the subject matter of any one of
Examples 18-21, the qualifier can optionally indicate a type
of error in the data.

In Example 23, in the subject matter of any one of
Examples 18-22, at least one of the data source unit, the data
consumer unit, and the at least one intermediate functional
unit can optionally be one of a data storage element or a data
processing element.

In Example 24, in the subject matter of any one of
Examples 18-23, the data storage element or the data process-
ing element can optionally be one of a processor core, an
input-output element, a memory, or an inter-processor inter-
connect element.

Example 25 is a non-transitory, computer-readable storage
medium including instructions that, when executed by a pro-
cessor, cause the processor to perform the method of
Examples 1-17.

In the above description, numerous details are set forth. It
will be apparent, however, to one of ordinary skill in the art
having the benefit of this disclosure, that embodiments may
be practiced without these specific details. In some instances,
well-known structures and devices are shown in block dia-
gram form, rather than in detail, in order to avoid obscuring
the description.

Some portions of the detailed description are presented in
terms of algorithms and symbolic representations of opera-
tions on data bits within a computer memory. These algorith-
mic descriptions and representations are the means used by
those skilled in the data processing arts to most effectively
convey the substance of their work to others skilled in the art.
An algorithm is here and generally, conceived to be a self-

10

15

20

25

30

35

40

45

50

55

60

65

16

consistent sequence of operations leading to a desired result.
The operations are those requiring physical manipulations of
physical quantities. Usually, though not necessarily, these
quantities take the form of electrical or magnetic signals
capable of being stored, transferred, combined, compared
and otherwise manipulated. It has proven convenient at times,
principally for reasons of common usage, to refer to these
signals as bits, values, elements, symbols, characters, terms,
numbers or the like. The blocks described herein can be
hardware, software, firmware or a combination thereof.

It should be borne in mind, however, that all of these and
similar terms are to be associated with the appropriate physi-
cal quantities and are merely convenient labels applied to
these quantities. Unless specifically stated otherwise as
apparent from the above discussion, it is appreciated that
throughout the description, discussions utilizing terms such

as “encrypting,” “decrypting,” “storing,” “providing,” “deriv-
ing,” “obtaining,” “receiving,” “authenticating,” “deleting,”
“executing,” “requesting,” “communicating,” or the like,

refer to the actions and processes of a computing system, or
similar electronic computing device, that manipulates and
transforms data represented as physical (e.g., electronic)
quantities within the computing system’s registers and
memories into other data similarly represented as physical
quantities within the computing system memories or registers
or other such information storage, transmission or display
devices.

The words “example” or “exemplary” are used herein to
mean serving as an example, instance or illustration. Any
aspect or design described herein as “example’ or “exem-
plary” is not necessarily to be construed as preferred or
advantageous over other aspects or designs. Rather, use of the
words “example” or “exemplary” is intended to present con-
cepts in a concrete fashion. As used in this application, the
term “or” is intended to mean an inclusive “or” rather than an
exclusive “or.”” That is, unless specified otherwise, or clear
from context, “X includes A or B” is intended to mean any of
the natural inclusive permutations. That is, if X includes A; X
includes B; or X includes both A and B, then “X includes A or
B” is satisfied under any of the foregoing instances. In addi-
tion, the articles “a” and “an” as used in this application and
the appended claims should generally be construed to mean
“one or more” unless specified otherwise or clear from con-
text to be directed to a singular form. Moreover, use of the
term “an embodiment” or “one embodiment” or “an imple-
mentation” or “one implementation” throughout is not
intended to mean the same embodiment or implementation
unless described as such. Also, the terms “first,” “second,”
“third,” “fourth,” etc. as used herein are meant as labels to
distinguish among different elements and may not necessar-
ily have an ordinal meaning according to their numerical
designation.

Embodiments descried herein may also relate to an appa-
ratus for performing the operations herein. This apparatus
may be specially constructed for the required purposes, or it
may comprise a general-purpose computer selectively acti-
vated or reconfigured by a computer program stored in the
computer. Such a computer program may be stored in a non-
transitory computer-readable storage medium, such as, but
not limited to, any type of disk including floppy disks, optical
disks, CD-ROMs and magnetic-optical disks, read-only
memories (ROMs), random access memories (RAMs),
EPROMs, EEPROMSs, magnetic or optical cards, flash
memory, or any type of media suitable for storing electronic
instructions. The term “computer-readable storage medium”
should be taken to include a single medium or multiple media
(e.g., a centralized or distributed database and/or associated

US 9,063,855 B2

17

caches and servers) that store the one or more sets of instruc-
tions. The term “computer-readable medium” shall also be
taken to include any medium that is capable of storing, encod-
ing or carrying a set of instructions for execution by the
machine and that causes the machine to perform any one or
more of the methodologies of the present embodiments. The
term “computer-readable storage medium” shall accordingly
be taken to include, but not be limited to, solid-state memo-
ries, optical media, magnetic media, any medium that is
capable of storing a set of instructions for execution by the
machine and that causes the machine to perform any one or
more of the methodologies of the present embodiments.

The algorithms and displays presented herein are not inher-
ently related to any particular computer or other apparatus.
Various general-purpose systems may be used with programs
in accordance with the teachings herein, or it may prove
convenient to construct a more specialized apparatus to per-
form the operations. The required structure for a variety of
these systems will appear from the description below. In
addition, the present embodiments are not described with
reference to any particular programming language. It will be
appreciated that a variety of programming languages may be
used to implement the teachings of the embodiments as
described herein.

The above description sets forth numerous specific details
such as examples of specific systems, components, methods
and so forth, in order to provide a good understanding of
several embodiments. It will be apparent to one skilled in the
art, however, that at least some embodiments may be prac-
ticed without these specific details. In other instances, well-
known components or methods are not described in detail or
are presented in simple block diagram format in order to
avoid unnecessarily obscuring the present embodiments.
Thus, the specific details set forth above are merely exem-
plary. Particular implementations may vary from these exem-
plary details and still be contemplated to be within the scope
of the present embodiments.

It is to be understood that the above description is intended
to be illustrative and not restrictive. Many other embodiments
will be apparent to those of skill in the art upon reading and
understanding the above description. The scope ofthe present
embodiments should, therefore, be determined with reference
to the appended claims, along with the full scope of equiva-
lents to which such claims are entitled.

What is claimed is:
1. A method, comprising:
receiving, by a data consumer unit in a processing device,
data and a qualifier synchronously with the data, the
qualifier to indicate the data is uncorrectable, the data
and the qualifier being received from a data source unit
in the processing device;
detecting, by the data consumer unit, the data is uncorrect-
able based on the qualifier;
signaling or logging, by the data consumer unit, a high
severity error indication in response to detecting the data
is uncorrectable; and
maintaining, without consuming, by the data consumer
unit, the data.
2. The method of claim 1, wherein the qualifier is stored in
a field associated with the data.
3. The method of claim 1, wherein the qualifier indicates
the data source unit as a source of error for the data.
4. The method of claim 1, wherein the qualifier indicates a
type of error in the data.
5. The method of claim 4, wherein the type of error in the
data is uncorrectable or incomplete.

20

30

35

40

45

50

o

5

18

6. The method of claim 5, wherein the type of uncorrect-
able error is a multi-bit error or parity error.

7. The method of claim 1, wherein preventing use of the
data and the qualifier comprises aborting delivery of the data.

8. The method of claim 1, wherein the data consumer unit
is a register file or functional unit when the data comprises
operand data or an execution unit when the data comprises
instructions.

9. The method of claim 8,

wherein when the data is operand data, the use of the data

is prevented until the instruction stream is re-steered to
error processing code and

wherein when the data comprises instructions, the execu-

tion unit:

detects an error based on the qualifier,

prevents the uncorrectable instruction data from execut-
ing,

re-steers the instructions to error processing code, and

retires an associated instruction stream.

10. The method of claim 9, further comprising processing,
by the processing device, the re-steered instruction stream
with the error processing code.

11. The method of claim 9, further comprising, after pro-
cessing the error processing code, resuming program execu-
tion by the processing device.

12. The method of claim 1, further comprising detecting,
by the data source unit, the data is uncorrectable and signal-
ing, by the data source unit, a low severity error indication.

13. The method of claim 1, further comprising:

receiving the data and the qualifier by at least one interme-

diate functional unit in the processing device;
detecting, by the at least one intermediate functional unit,
the data is uncorrectable based on the qualifier; and
transmitting, without using, by the atleast one intermediate
functional unit, the data and the qualifier synchronously
with the data to the data consumer unit.

14. The method of claim 1, further comprising at least one
of signaling or logging, by the at least one intermediate func-
tional unit, a low severity error indication in response to
detecting the data is uncorrectable.

15. The method of claim 1, further comprising at least one
of signaling or logging, by the data consumer unit, a low
severity error indication in response to detecting the data is
uncorrectable, but is not yet required for use as an operand for
operand data or for execution for instruction data.

16. The method of claim 1, wherein the qualifier is inter-
preted as expanding beyond an initial data segment to an error
detection granularity of a functional unit storing the data.

17. A processing device, comprising:

a data consumer unit to:

receive data and a qualifier synchronously with the data,
the qualifier to indicate the data is uncorrectable, the
data and the qualifier being received from a data
source unit in the processing device,

receive the data and the qualifier,

detect the data is uncorrectable based on the qualifier,

signal or log, by the data consumer unit, a high severity
error indication in response to detecting the data is
uncorrectable, and

maintain, without consuming, the data.

18. The processing device of claim 17, further comprising
at least one intermediate functional unit to:

receive the data and the qualifier;

detect the data is uncorrectable based on the qualifier; and

transmit, without using, the data and the qualifier synchro-

nously with the data to the data consumer unit.

US 9,063,855 B2

19

19. The processing device of claim 17, wherein the quali-
fier is stored in a field associated with the data.

20. The processing device of claim 17, wherein the quali-
fier indicates the data source unit as a source of generating
uncorrectable data.

21. The processing device of claim 17, wherein the quali-
fier indicates a type of error in the data.

22. The processing device of claim 18, wherein at least one
of'the data source unit, the data consumer unit, and the at least
one intermediate functional unit is one of a data storage
element or a data processing element.

23. The processing device of claim 22, wherein the data
storage element or the data processing element is one of a
processor core, an input-output element, a memory, or an
inter-processor interconnect element.

24. A non-transitory, computer-readable storage medium
including instructions that, when executed by a processor,
cause the processor to perform operations comprising:

receiving, by a data consumer unit in the processor, data

and a qualifier synchronously with the data, the qualifier

5

10

15

20

to indicate the data is uncorrectable, the data and the
qualifier being received from a data source unit in the
processor;

detecting, by the data consumer unit, the data is uncorrect-
able based on the qualifier;

signaling or logging, by the data consumer unit, a high
severity error indication in response to detecting the data
is uncorrectable; and

maintaining, without consuming, by the data consumer
unit, the data.

25. The storage medium of claim 24, wherein the processor

is further to perform operations comprising:

receiving the data and the qualifier by at least one interme-
diate functional unit in the processor;

detecting, by the at least one intermediate functional unit,
the data is uncorrectable based on the qualifier; and

transmitting, without using, by the atleast one intermediate
functional unit, the data and the qualifier synchronously
with the data to the data consumer unit.

#* #* #* #* #*

